The value of curlF.dS is 72π if the F(x, y, z) = yzi 9xzj exyk, c is the circle x2 y2 = 9, z = 1
It is defined as the mathematical calculation by which we can sum up all the smaller parts into a unit.
We have:
[tex]\rm F(x, y, z) = yzi+ 9xzj+ e^{xy}k[/tex]
And curl is x²+y²= 9 and z =1
In the parametric form:
[tex]\rm \vec{r}(t) = 3cost \vec{i}+3sint \vec{j}+\vec{k}[/tex] 0 ≤ t ≤ 2π
First two component represent the circle and last one represent the z =1
Using Stoke's theorem:
[tex]\rm \int\limits\int\limits_S {curl \ \ve{F}.d\vec{S}} = \int\limits_C {\vec{F}} \, .d\vec{r } = \int\limits^{2\pi}_0 {\fec{F}(\vec{r}(t)).\vec(r)t} \, dt[/tex]
Here:
[tex]\rm \vec{F}(\vec{r}(t)) = 3sint \vec{i}+27cost \vec{j}+e^{cost.sint}\vec{k}[/tex]
Now calculate the dot product of curl F and dS we get:
[tex]\rm \int\limits\int\limits_S {curl \ \ve{F}.d\vec{S}} = \int\limits^{2\pi}_0 (-9sin^2t+81cos^2t)dt[/tex]
After solving the above integral, we will get:
[tex]\rm \int\limits\int\limits_S {curl \ \ve{F}.d\vec{S}} = 72\pi[/tex]
Thus, the value of curlF.dS is 72π if the F(x, y, z) = yzi 9xzj exyk, c is the circle x2 y2 = 9, z = 1
Learn more about integration here:
brainly.com/question/18125359
#SPJ4