Answer:
a. [tex]t_1=12.5\ s[/tex]
b. [tex]a_2=-13.61\ m.s^{-2}[/tex] must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c. [tex]t_2=2.5714\ s[/tex] is the time taken to stop after braking
Explanation:
Given:
a.
Time taken by the car to stop:
[tex]v_1=u_1+a_1.t_1[/tex]
where:
[tex]v_1=0[/tex] , final velocity after braking
[tex]t_1=[/tex] time taken
[tex]0=25-2\times t_1[/tex]
[tex]t_1=12.5\ s[/tex]
b.
using the eq. of motion for the given condition:
[tex]v_2^2=u_2^2+2.a_2.\Delta s[/tex]
where:
[tex]v_2=[/tex] final velocity of the chasing car after braking = 0
[tex]a_2=[/tex] acceleration of the chasing car after braking
[tex]0^2=35^2+2\times a_2\times 45[/tex]
[tex]a_2=-13.61\ m.s^{-2}[/tex] must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:
[tex]v_2=u_2+a_2.t_2[/tex]
[tex]0=35-13.61\times t_2[/tex]
[tex]t_2=2.5714\ s[/tex] is the time taken to stop after braking