Respuesta :
[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]
- Correct choice = B
[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]
Take HJ = a, GH = b and GJ = c
- a = b + 2
- c = a + b - 17
- a + b + c = 73
put the value of a from equation 1 in equation 2
[tex]\qquad❖ \: \sf \:c = (b + 2) + b - 17[/tex]
[tex]\qquad❖ \: \sf \:c = 2b - 15[/tex]
now, put the value of a and c in equation 3
[tex]\qquad❖ \: \sf \:b + 2 + b + 2b - 15 = 73[/tex]
[tex]\qquad❖ \: \sf \:4b - 13 = 73[/tex]
[tex]\qquad❖ \: \sf \:4b = 86[/tex]
[tex]\qquad❖ \: \sf \:b = 21.5 \: \: in[/tex]
Now, we need to find HJ (a)
[tex]\qquad❖ \: \sf \:a = b + 2[/tex]
[tex]\qquad❖ \: \sf \:a = 21.5 + 2[/tex]
[tex]\qquad❖ \: \sf \:23.5 \: \: in[/tex]
[tex] \qquad \large \sf {Conclusion} : [/tex]
- Option B is correct
Answer:
23.5 in
Step-by-step explanation:
To find the length of HJ in triangle GHJ, create three equations using the given information, then solve simultaneously.
Equation 1
HJ is two inches longer than GH:
⇒ HJ = GH + 2
Equation 2
GJ is 17 inches shorter than the sum of HJ and GH:
⇒ GJ + 17 = HJ + GH
Equation 3
The perimeter of ΔGHJ is 73 inches:
⇒ HJ + GH + GJ = 73
Substitute Equation 1 into Equation 2 and isolate GJ:
⇒ GJ + 17 = GH + 2 + GH
⇒ GJ + 17 = 2GH + 2
⇒ GJ = 2GH - 15
Substitute Equation 1 into Equation 3 and isolate GJ:
⇒ GH + 2 + GH + GJ = 73
⇒ 2GH + GJ = 71
⇒ GJ = 71 - 2GH
Equate the two equations where GJ is the subject and solve for GH:
⇒ 2GH - 15 = 71 - 2GH
⇒ 4GH = 86
⇒ GH = 21.5
Substitute the found value of GH into Equation 1 and solve for HJ:
⇒ HJ = 21.5 + 2
⇒ HJ = 23.5