Respuesta :

Answer:

The maximum value of function is 81 .

Step-by-step explanation:

Given function as :

y = 4 (x + 7) (2 - x)

Now, The function can be written as

y = 4 (2 x - x² + 14 - 7 x)

y = 4 ( - x² - 5 x + 14)

y = - 4 x² - 20 x + 56

Now, For maximum value of function , differentiation of y with respect to x

[tex]\frac{\partial y}{\partial x}[/tex] = 0

Or, [tex]\frac{\partial ( - 4x^{2} - 20 x +56)}{\partial x}[/tex] = 0

Or, - 8 x - 20 = 0

Or, - 8 x = 20

∴  x = [tex]\dfrac{-20}{8}[/tex]

i.e  x = [tex]\dfrac{-5}{2}[/tex]

Now, Putting the value of x in the given equation

y = - 4 ( [tex]\dfrac{-5}{2}[/tex])² - 20 ( [tex]\dfrac{-5}{2}[/tex]) + 56

Or, y = - 4 ([tex]\dfrac{25}{4}[/tex]) + 50 + 56

Or, y = - 25 + 50 + 56

∴    y = 81

So, The maximum value of function is 81

Hence,The maximum value of function is 81 . Answer