Respuesta :
check the picture below, the height there uses feet, but nevermind that, we can simply let it be meters, like in this case.
[tex]\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in meters} \\\\ h(t) = -4.9t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{25}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{3}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\\\ h(t)=-4.9t^2+25t+3[/tex]
how hight does it go? well, that'd be the y-coordinate of the vertex.
how long does it take? well, that'd be the x-coordinate of the vertex.
[tex]\bf \textit{vertex of a vertical parabola, using coefficients} \\\\ \begin{array}{lcccl} h(t) = & -4.9t^2& +25t& +3\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array} \qquad \left(-\cfrac{ b}{2 a}\quad ,\quad c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left(-\cfrac{25}{2(-4.9)}~~,~~3-\cfrac{25^2}{4(-4.9)} \right)\implies \left( \cfrac{25}{9.8}~~,~~3-\cfrac{625}{-19.6} \right) \\\\\\ \left( \cfrac{25}{9.8}~~,~~3+\cfrac{625}{19.6} \right)\implies \left( \cfrac{25}{9.8}~~,~~\cfrac{3419}{98} \right)[/tex]
[tex]\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in meters} \\\\ h(t) = -4.9t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{25}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{3}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\\\ h(t)=-4.9t^2+25t+3[/tex]
how hight does it go? well, that'd be the y-coordinate of the vertex.
how long does it take? well, that'd be the x-coordinate of the vertex.
[tex]\bf \textit{vertex of a vertical parabola, using coefficients} \\\\ \begin{array}{lcccl} h(t) = & -4.9t^2& +25t& +3\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array} \qquad \left(-\cfrac{ b}{2 a}\quad ,\quad c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left(-\cfrac{25}{2(-4.9)}~~,~~3-\cfrac{25^2}{4(-4.9)} \right)\implies \left( \cfrac{25}{9.8}~~,~~3-\cfrac{625}{-19.6} \right) \\\\\\ \left( \cfrac{25}{9.8}~~,~~3+\cfrac{625}{19.6} \right)\implies \left( \cfrac{25}{9.8}~~,~~\cfrac{3419}{98} \right)[/tex]