Respuesta :

[tex]2n^4+4n^3-4n^2-8n[/tex]
Replace g(n) and h(n) with the functions to multiply
[tex](n^{3} -2n)*(2n+4)[/tex]
Multiply the First, Inner, Outer, and Last terms in the parentheses. when multiplying a variable the exponents of the same base add together.
[tex](n^{3} -2n)*(2n+4) = 2n^4+4n^3-4n^2-8n[/tex]

Answer: [tex]g(n)\cdot h(n)=2n^4+4n^3-4n^2-8n[/tex]

Step-by-step explanation:

The given functions :

[tex]g(n)=n^3-2n\\\\ h(n)=2n+4[/tex] of same variable n.

The indicated operation here is multiplication.

Therefore,

[tex]g(n)\cdot h(n)=(n^3-2n)(2n+4)\\\\n^3(2n)+n^3(4)-2n(2n)-2n(4)\\\\=2n^4+4n^3-4n^2-8n[/tex]

Hence, [tex]g(n)\cdot h(n)=2n^4+4n^3-4n^2-8n[/tex]