Respuesta :
1. Starting with 15, each successive term is obtained by multiplying by [tex]\dfrac15[/tex]. So the explicit rule for the sequence must be
[tex]a(n)=15\left(\dfrac15\right)^{n-1}[/tex]
2. Starting with 10, the next terms are obtained by multiplying by -8. So the recursive rule would be
[tex]\begin{cases}a(1)=10\\a(n)=-8a(n-1)&\text{for }n\ge2\end{cases}[/tex]
3. We're given the recursive rule,
[tex]\begin{cases}a(1)=2\\a(n)=\dfrac13a(n-1)&\text{for }n\ge2\end{cases}[/tex]
We have
[tex]a(n)=\dfrac13a(n-1)=\left(\dfrac13\right)^2a(n-2)=\left(\dfrac13\right)^3a(n-3)=\cdots=\left(\dfrac13\right)^{n-1}a(1)[/tex]
so the explicit rule is
[tex]a(n)=2\left(\dfrac13\right)^{n-1}[/tex]
4. We're given the explicit rule
[tex]a(n)=\dfrac12\left(\dfrac43\right)^{n-1}[/tex]
When [tex]n=1[/tex], we get the first term to be [tex]a(1)=\dfrac12[/tex]. For each successive term, we have to multiply by [tex]\dfrac43[/tex]. So the recursive rule is
[tex]\begin{cases}a(1)=\dfrac12\\\\a(n)=\dfrac43a(n-1)&\text{for }n\ge2\end{cases}[/tex]
[tex]a(n)=15\left(\dfrac15\right)^{n-1}[/tex]
2. Starting with 10, the next terms are obtained by multiplying by -8. So the recursive rule would be
[tex]\begin{cases}a(1)=10\\a(n)=-8a(n-1)&\text{for }n\ge2\end{cases}[/tex]
3. We're given the recursive rule,
[tex]\begin{cases}a(1)=2\\a(n)=\dfrac13a(n-1)&\text{for }n\ge2\end{cases}[/tex]
We have
[tex]a(n)=\dfrac13a(n-1)=\left(\dfrac13\right)^2a(n-2)=\left(\dfrac13\right)^3a(n-3)=\cdots=\left(\dfrac13\right)^{n-1}a(1)[/tex]
so the explicit rule is
[tex]a(n)=2\left(\dfrac13\right)^{n-1}[/tex]
4. We're given the explicit rule
[tex]a(n)=\dfrac12\left(\dfrac43\right)^{n-1}[/tex]
When [tex]n=1[/tex], we get the first term to be [tex]a(1)=\dfrac12[/tex]. For each successive term, we have to multiply by [tex]\dfrac43[/tex]. So the recursive rule is
[tex]\begin{cases}a(1)=\dfrac12\\\\a(n)=\dfrac43a(n-1)&\text{for }n\ge2\end{cases}[/tex]