Respuesta :
Assume x > 0
√(2x⁵/18)
= √(2/18) * √(x⁵)
= √(1/9) * √(x⁴ · x)
= 1/3 * √x⁴ * √x
= 1/3 * x² * √x
= 1/3 * x²√x
= [tex] \frac{ x^{2} \sqrt{x} }{3} [/tex]
√(2x⁵/18)
= √(2/18) * √(x⁵)
= √(1/9) * √(x⁴ · x)
= 1/3 * √x⁴ * √x
= 1/3 * x² * √x
= 1/3 * x²√x
= [tex] \frac{ x^{2} \sqrt{x} }{3} [/tex]
Answer with explanation:
The Meaning of equivalent expression is those expressions, in which when you replace the variables by some constant values , in the original expression and the reduced expression,the both expression produce the same numerical value.
The expression which is equivalent to:
[tex]\rightarrow\sqrt {\frac{2x^5}{18}}\\\\=\sqrt{\frac{x^5}{9}}\\\\=\frac{x^2}{3}\times\sqrt{x}[/tex]
This can be illustrated by
Original Expression
[tex]A=\sqrt {\frac{2x^5}{18}}\\\\ \text{put, x=1}\\\\A=\sqrt{\frac{2 \times 1^5}{18}}\\\\A=\sqrt{\frac{1}{9}}\\\\A=\frac{1}{3}\\\\\text{Equivalent Expression B}\rightarrow \frac{x^2}{3}\times \sqrt{x}\\\\\text{put,x=1}\\\\B=\frac{1^2}{3}\times \sqrt{1}\\\\B=\frac{1}{3}[/tex]