Respuesta :
First compute 25-11=14 years.
Computing the yearly interest:
[tex]165,000(1+0.024)^{25}=298526[/tex]
[tex] \frac{298526}{25}=11941,04/year[/tex]
After 14 years, the amount paid by maurice s the following:
[tex]11941,04\times11=\$131351[/tex]
So there remains
[tex]298526-131351=\$167175[/tex]
Compute 80% of \$167175:
[tex]\$167175\times0.8=\$133740[/tex]
2.4/6=0.4%
Compute 0.4% of $133740:
[tex]$133740\times0.004=\$534[/tex]
The correct answer is C.
Computing the yearly interest:
[tex]165,000(1+0.024)^{25}=298526[/tex]
[tex] \frac{298526}{25}=11941,04/year[/tex]
After 14 years, the amount paid by maurice s the following:
[tex]11941,04\times11=\$131351[/tex]
So there remains
[tex]298526-131351=\$167175[/tex]
Compute 80% of \$167175:
[tex]\$167175\times0.8=\$133740[/tex]
2.4/6=0.4%
Compute 0.4% of $133740:
[tex]$133740\times0.004=\$534[/tex]
The correct answer is C.