The volume of a cylinder is given by the formula V = (pi)r^2h, where r is the radius of the cylinder and h is the height. Suppose a cylindrical can has radius (x - 3) and height (2x + 7). Which expression represents the volume of the can?

Respuesta :

Answer: The expression that represents the volume of the can (cylinder) is:

V=pi (2x+7) (x-3)^2

V=pi (2x^3-5x^2-24x+63)


Solution:

V=pi r^2 h

Radius of the cylinder: r=(x-3)

Height of the cylinder: h=(2x+7)

Replacing "r" by "(x-3)" and "h" by "(2x+7)" in the formula above:

V= pi (x-3)^2 (2x+7)

V=pi (2x+7) (x-3)^2

V=pi (2x+7) (x^2-2x(3)+3^2)

V=pi (2x+7)(x^2-6x+9)

V=pi ( 2x(x^2)-2x(6x)+2x(9)+7(x^2)-7(6x)+7(9) )

V=pi (2x^3-12x^2+18x+7x^2-42x+63)

V=pi (2x^3-5x^2-24x+63)

The volume of cylinder when radius is (x - 3) and height is (2x + 7) is given by the expression: [tex]\rm V = \pi \times (2x^3-5x^2-24x+63)[/tex] .

Given :

Volume of cylinder - [tex]\rm V = \pi r^2h[/tex]

It is given that the volume of the cylinder - [tex]\rm V = \pi r^2h[/tex]. If the radius is (x-3) and height is (2x+7) than volume of cylinder can be written as:

[tex]\rm V = \pi \times (x-3)^2\times (2x-7)[/tex]  --- (1)

Expand the [tex](x-3)^2[/tex] term in equation (1).

[tex]\rm V= \pi \times (x^2-6x + 9)\times (2x+7)[/tex]

Now, multiply [tex](x^2-6x+9)[/tex] and [tex](2x+7)[/tex] in above equation.

[tex]\rm V = \pi\times (2x^3-12x^2+18x+7x^2-42x+63)[/tex]

Further simplify the above equation.

[tex]\rm V = \pi \times(2x^3-5x^2-24x+63)[/tex]

Therefore, the volume of cylinder when radius is (x - 3) and height is (2x + 7) is given by the expression: [tex]\rm V = \pi \times (2x^3-5x^2-24x+63)[/tex].

For more information, refer the link given below

https://brainly.com/question/6071957