Respuesta :

Answer:

Any proposed solution of a rational equation that causes a denominator to equal​ __ZERO__ is rejected.

Step-by-step explanation:

We will show this statement is true by an example:

Consider the expression :  [tex]\frac{x}{x-4}=\frac{x}{x-4}+4[/tex]

Now, solved the rational expression and check its proposed solution

[tex]\frac{x}{x-4}=\frac{x}{x-4}+4[/tex]

x cannot equal to 4, as it makes  both denominators equal to zero.

Multiply both the sides by (x-4),

[tex]\left ( x-4 \right )\cdot \frac{x}{x-4}=\left (x-4 \right )\cdot\left ( \frac{x}{x-4}+4  \right )\\[/tex]

Now, use the distributive property on Right hand side,

[tex]\left ( x-4 \right )\cdot \frac{x}{x-4}=\left (x-4 \right )\cdot \left ( \frac{x}{x-4} \right )+\left (x-4 \right )\cdot 4\\[/tex]

Simplify the above expression,

[tex]x=x+4x-16[/tex]

Combine like terms,

[tex]x-x-4x=-16[/tex]

[tex]-4x=-16[/tex]

Divide both sides by -4, we get

[tex]\frac{-4x}{-4}=\frac{-16}{-4}[/tex]

[tex]x=4[/tex].

As we know that x cannot equal to 4, replacing x=4 in the original expression causes the denominator equal to 0.

Check the solution: [tex]\frac{x}{x-4}=\frac{x}{x-4}+4[/tex]

Substitute the value of x=4 in the original expression,

[tex]\frac{4}{4-4}=\frac{4}{4-4}+4[/tex]

[tex]\frac{4}{0}=\frac{4}{0}+4[/tex]

Thus, 4 must be rejected as the solution, and the solution set is only 0.