Respuesta :
Answer: [tex]4x^{2} - 6x - 54[/tex]
1. We use formula:
[tex]\boxed{P_{rectangle} = a \cdot b}[/tex]
[tex]
P_{rectangle} = a \cdot b
\\ \\ \\
P = (2x - 9)(2x + 6)
\\ \\ \\
P = 4x^{2} + 12x - 18x - 54
\\ \\ \\
P = 4x^{2} - 6x - 54[/tex]
So the area is equal to: [tex]4x^{2} - 6x - 54[/tex]. Hope this helps!
1. We use formula:
[tex]\boxed{P_{rectangle} = a \cdot b}[/tex]
[tex]
P_{rectangle} = a \cdot b
\\ \\ \\
P = (2x - 9)(2x + 6)
\\ \\ \\
P = 4x^{2} + 12x - 18x - 54
\\ \\ \\
P = 4x^{2} - 6x - 54[/tex]
So the area is equal to: [tex]4x^{2} - 6x - 54[/tex]. Hope this helps!