Respuesta :

msm555

Answer:

[tex]\overline{ \sf AC} = 14 \textsf{units}[/tex]

Step-by-step explanation:

To find the length of side [tex]\overline{ \sf AC}[/tex], let's use the given information about the perimeter:

The perimeter of a triangle is the sum of the lengths of its three sides.

So, we have

[tex] \sf \overline{\sf AB} +\overline{\sf BC} + \overline{\sf AC} = 41 [/tex]

Substitute the value of AB, BC, and AC:

[tex] (3z - 2) + (z + 1) + (2z) = 41 [/tex]

Combine like terms:

[tex] (3z+z+2z) -2+1 =41 [/tex]

[tex] 6z - 1 = 41 [/tex]

Now, solve for z:

[tex] 6z = 41+1 [/tex]

[tex] 6z = 42 [/tex]

[tex] z =\dfrac{42}{6}[/tex]

[tex] z = 7 [/tex]

Now that we the value of z, we can find the length of side [tex]\overline{ \sf AC}[/tex],

[tex] \overline{\sf AC }= 2z = 2(7) = 14 [/tex]

So, the length of side [tex]\overline{ \sf AC}[/tex] is 14 units.