Respuesta :

Step-by-step explanation:

To factorize the expression \(9(x-y)^2 - x^2\), you can use the difference of squares formula, which states that \(a^2 - b^2 = (a + b)(a - b)\). Apply this to your expression:

\[ 9(x-y)^2 - x^2 = (3(x-y))^2 - x^2 \]

Now, you can recognize it as a difference of squares:

\[ = (3(x-y) + x)(3(x-y) - x) \]

Therefore, the factored form is \((3x - 3y + x)(3x - 3y - x)\).

Answer:

x = 0.75 or x = 0.375

Step-by-step explanation:

[tex]9(x-y)^2-x^2[/tex]

[tex]= 9(x^2-2xy+y^2)-x^2[/tex]

[tex]= 9x^2-18xy+9y^2-x^2[/tex]

[tex]= 8x^2-18xy+9y^2[/tex]

Using Sridhar Acharya's Formula:

[tex]x = \frac{-b+\sqrt{b^2-4ac}}{2a}[/tex]   and   [tex]x = \frac{-b-\sqrt{b^2-4ac}}{2a}[/tex]

∴ [tex]x = \frac{18+\sqrt{18^2-(4.8.9)}}{2.16}[/tex]   and   [tex]x = \frac{18-\sqrt{18^2-(4.8.9)}}{2.16}[/tex]

[tex]= > x = \frac{18+\sqrt{36}}{32}[/tex]   and  [tex]x = \frac{18-\sqrt{36}}{32}[/tex]

[tex]= > x = \frac{24}{32} = 0.75[/tex]   and   [tex]= > x = \frac{12}{32} = 0.375[/tex]