Respuesta :
Answer:
Hope this helps!
Explanation:
A=60n
B=10.2n
C=6kg
D=6kg
E=10m/s^2
Answer:
a) 60N
b) 10.2 N
c) 6 kg
d) 6 kg
e) m/s²
Explanation:
Let's use the formula [tex] \textsf{Weight} = \textsf{mass} \times \textsf{gravitational field} [/tex] to answer each part of the question.
Given:
- Gravitational field on Earth ([tex] g_{\textsf{Earth}} [/tex]) = [tex] 10 \, \textsf{N/kg} [/tex]
- Gravitational field on the Moon ([tex] g_{\textsf{Moon}} [/tex]) = [tex] 1.7 \, \textsf{N/kg} [/tex]
- Mass ([tex] m [/tex]) = [tex] 6 \, \textsf{kg} [/tex]
(a)
Weight of a 6 kg bucket on Earth:
[tex] \textsf{Weight}_{\textsf{Earth}} = m \times g_{\textsf{Earth}} [/tex]
[tex] \textsf{Weight}_{\textsf{Earth}} = 6 \, \textsf{kg} \times 10 \, \textsf{N/kg} = 60 \, \textsf{N} [/tex]
(b)
Weight of a 6 kg bucket on the Moon:
[tex] \textsf{Weight}_{\textsf{Moon}} = m \times g_{\textsf{Moon}} [/tex]
[tex] \textsf{Weight}_{\textsf{Moon}} = 6 \, \textsf{kg} \times 1.7 \, \textsf{N/kg} = 10.2 \, \textsf{N} [/tex]
(c)
Mass of a 6 kg bucket on Earth:
The mass is given as [tex] 6 \, \textsf{kg} [/tex], which is the same on any celestial body.
(d) Mass of a 6 kg bucket on the Moon:
The mass is given as [tex] 6 \, \textsf{kg} [/tex], which is the same on any celestial body.
(e) Acceleration of a 6 kg bucket on Earth:
The acceleration due to gravity ([tex] g_{\textsf{Earth}} [/tex]) is [tex] 10 \, \textsf{m/s}^2 [/tex].
So, the acceleration [tex] a_{\textsf{Earth}} [/tex] is the same as the gravitational field:
[tex] a_{\textsf{Earth}} = g_{\textsf{Earth}} = 10 \, \textsf{m/s}^2 [/tex]