contestada

we know the gravitational field on Earth is 10 n/kg; on the moon, though, the gravitational field is 1.7 N/kg.
(a) What is the weight of a 6 kg bucket on the earth's surface?
(b) What is the weight of a 6 kg bucket on the moon's surface?
(c) What is the mass of a 6 kg bucket sitting on the earth's surface?
(d) What is the mass of a 6 kg bucket sitting on the moon's surface?
(e) What is the acceleration of a 6 kg bucket sitting on the earth's surface?

Respuesta :

Answer:

Hope this helps!

Explanation:

A=60n

B=10.2n

C=6kg

D=6kg

E=10m/s^2

msm555

Answer:

a) 60N

b) 10.2 N

c) 6 kg

d) 6 kg

e) m/s²

Explanation:

Let's use the formula [tex] \textsf{Weight} = \textsf{mass} \times \textsf{gravitational field} [/tex] to answer each part of the question.

Given:

  • Gravitational field on Earth ([tex] g_{\textsf{Earth}} [/tex]) = [tex] 10 \, \textsf{N/kg} [/tex]
  • Gravitational field on the Moon ([tex] g_{\textsf{Moon}} [/tex]) = [tex] 1.7 \, \textsf{N/kg} [/tex]
  • Mass ([tex] m [/tex]) = [tex] 6 \, \textsf{kg} [/tex]

(a)

Weight of a 6 kg bucket on Earth:

[tex] \textsf{Weight}_{\textsf{Earth}} = m \times g_{\textsf{Earth}} [/tex]

[tex] \textsf{Weight}_{\textsf{Earth}} = 6 \, \textsf{kg} \times 10 \, \textsf{N/kg} = 60 \, \textsf{N} [/tex]

(b)

Weight of a 6 kg bucket on the Moon:

[tex] \textsf{Weight}_{\textsf{Moon}} = m \times g_{\textsf{Moon}} [/tex]

[tex] \textsf{Weight}_{\textsf{Moon}} = 6 \, \textsf{kg} \times 1.7 \, \textsf{N/kg} = 10.2 \, \textsf{N} [/tex]

(c)

Mass of a 6 kg bucket on Earth:

The mass is given as [tex] 6 \, \textsf{kg} [/tex], which is the same on any celestial body.

(d) Mass of a 6 kg bucket on the Moon:

The mass is given as [tex] 6 \, \textsf{kg} [/tex], which is the same on any celestial body.

(e) Acceleration of a 6 kg bucket on Earth:

The acceleration due to gravity ([tex] g_{\textsf{Earth}} [/tex]) is [tex] 10 \, \textsf{m/s}^2 [/tex].

So, the acceleration [tex] a_{\textsf{Earth}} [/tex] is the same as the gravitational field:

[tex] a_{\textsf{Earth}} = g_{\textsf{Earth}} = 10 \, \textsf{m/s}^2 [/tex]