Respuesta :
[tex]\bf (5-2i^2)^2\qquad \textit{now recall }i^2=\sqrt{-1}\cdot \sqrt{-1}=\sqrt{(-1)^2}=-1
\\\\\\
(5-2(-1))^2\implies (5+2)^2\implies 7^2\implies 49[/tex]
ANSWER
[tex](5 - 2 {i}^{2} ) ^{2} = 49[/tex]
EXPLANATION
The given expression is
[tex](5 - 2 {i}^{2} ) ^{2} [/tex]
This is an expression containing a complex number.
Recall that in complex numbers,
[tex] {i}^{2} = - 1[/tex]
The expression now becomes,
[tex](5 - 2 {i}^{2} ) ^{2} = (5 - 2 ( - 1) ) ^{2} [/tex]
This implies that,
[tex](5 - 2 {i}^{2} ) ^{2} = (5 + 2 ) ^{2} [/tex]
This will simplify to,
[tex](5 - 2 {i}^{2} ) ^{2} = {7}^{2} [/tex]
This eventually gives us,
[tex](5 - 2 {i}^{2} ) ^{2} = 49[/tex]
[tex](5 - 2 {i}^{2} ) ^{2} = 49[/tex]
EXPLANATION
The given expression is
[tex](5 - 2 {i}^{2} ) ^{2} [/tex]
This is an expression containing a complex number.
Recall that in complex numbers,
[tex] {i}^{2} = - 1[/tex]
The expression now becomes,
[tex](5 - 2 {i}^{2} ) ^{2} = (5 - 2 ( - 1) ) ^{2} [/tex]
This implies that,
[tex](5 - 2 {i}^{2} ) ^{2} = (5 + 2 ) ^{2} [/tex]
This will simplify to,
[tex](5 - 2 {i}^{2} ) ^{2} = {7}^{2} [/tex]
This eventually gives us,
[tex](5 - 2 {i}^{2} ) ^{2} = 49[/tex]