The angle of elevation is obtained as follows:
Step 1: Make a sketch of the scenario, as below?
Step 2: Apply the appropriate trigonometric ratio to obtain the unknown angle, as follows:
[tex]\text{tan}\theta=\frac{opposite}{adjacent}[/tex]With respect to the unknown angle:
opposite = 140 ft
adjacent = 120 ft
Therefore:
[tex]\begin{gathered} \text{tan}\theta=\frac{opposite}{adjacent} \\ \Rightarrow\text{tan}\theta=\frac{140\text{ ft}}{120\text{ ft}}=\frac{140}{120}=1.1667 \\ \Rightarrow\text{tan}\theta=1.1667 \\ \Rightarrow\theta=\tan ^{-1}(1.1667)=49.4^o \\ \Rightarrow\theta=49^o\text{ (to the nearest degre}e\text{)} \end{gathered}[/tex]Therefore, the angle of elevation is 49 degrees