Respuesta :

Given that

[tex]\ln (x+1)=7[/tex]

To solve for x, applying log rules

Where

[tex]\begin{gathered} \ln N=x \\ N=e^x \end{gathered}[/tex]

Applying the log rule above to the given expression

[tex]\begin{gathered} \ln (x+1)=7 \\ e^{\ln (x+1)}=e^7 \\ x+1=e^7 \end{gathered}[/tex]

Solve for x, i.e make x the subject

[tex]\begin{gathered} x+1=e^7 \\ x=e^7-1 \\ x=1096.63316-1 \\ x=1095.63316 \\ x=1095.6\text{ (nearest tenth)} \end{gathered}[/tex]

Hence, x = 1095.6 (nearest tenth)