Respuesta :

SOLUTION:

Case: Function transformation

Given:

A graph of x^2 transformed

Method:

Steps of transformation

[tex]y=(ax)^2+b[/tex]

1. Stating the parent function

[tex]y=x^2[/tex]

2. Translating a step-down mean s b= -1

[tex]y=x^2-1[/tex]

3. Since the function is stretched, the a picks up a value less than 1

[tex]y=(\frac{3}{4}x)^2-1[/tex]

Above is the only suitable fraction option from above, as a=3/4 and b=-1.

Final answer: Option (D)

[tex]f(x)=(\frac{3}{4}x)^2-1[/tex]