SOLUTION:
Case: Function transformation
Given:
A graph of x^2 transformed
Method:
Steps of transformation
[tex]y=(ax)^2+b[/tex]1. Stating the parent function
[tex]y=x^2[/tex]2. Translating a step-down mean s b= -1
[tex]y=x^2-1[/tex]3. Since the function is stretched, the a picks up a value less than 1
[tex]y=(\frac{3}{4}x)^2-1[/tex]Above is the only suitable fraction option from above, as a=3/4 and b=-1.
Final answer: Option (D)
[tex]f(x)=(\frac{3}{4}x)^2-1[/tex]