A sales person is given a choice of two salary plans. Plan 1 is a weekly salary of 700 plus 4% commission of sales. Plan 2 is a straight commission of 12%Of sales. How much in sales must he make in a week for both plans to result in the same salary?

Respuesta :

Let 's' represent the amount of sales.

Plan 1:

[tex]\text{ \$700 + (4\% of s)}[/tex][tex]\begin{gathered} \text{ \$700+(}\frac{\text{4}}{100}\times s) \\ \text{ \$700+(0.04}\times s)=\text{ \$700}+0.04s \end{gathered}[/tex]

Plan 2:

[tex]12\text{ \% of s}[/tex][tex]\begin{gathered} \frac{12}{100}\times s \\ 0.12\times s=0.12s \end{gathered}[/tex]

Equating the two plans together and solving for the amount of sales,

[tex]\begin{gathered} \text{Plan 2=Plan 1} \\ 0.12s=\text{ \$700+0.04s} \\ \end{gathered}[/tex]

Collecting like terms,

[tex]\begin{gathered} 0.12s-0.04s=\text{ \$700} \\ 0.08s=\text{\$700} \end{gathered}[/tex]

Divide both sides by 0.08,

[tex]\begin{gathered} \frac{0.08s}{0.08}=\frac{\text{ \$700}}{0.08} \\ s=\text{ \$8750} \end{gathered}[/tex]

Hence, the amount of sales is $8,750.