Respuesta :

From the given figures

Since LH // KJ, then

[tex]\frac{GL}{LK}=\frac{GH}{HJ}[/tex]

GL = 6, LK = 30

GH = 3, HJ = y

Substitute them in the ratio above

[tex]\frac{6}{30}=\frac{3}{y}[/tex]

By using cross multiplication

[tex]\begin{gathered} 6\times y=30\times3 \\ 6y=90 \end{gathered}[/tex]

Divide both sides by 6

[tex]\begin{gathered} \frac{6y}{6}=\frac{90}{6} \\ y=15 \end{gathered}[/tex]

Since GJ = GH + HJ

[tex]\begin{gathered} GJ=3+15 \\ GJ=18 \end{gathered}[/tex]

The answer is 36