Respuesta :

Step 1

Write out the expression for the probability of an event occurring

[tex]Pr(\text{event occurring) = }\frac{number\text{ of required outcomes}}{\text{Total number of outcomes}}[/tex]

Where,

Total of required outcomes= 6

Step 2

Find the probability of getting a 1

[tex]Pr(1)=\text{ }\frac{1}{6}[/tex]

Step 3

Find the probability of getting a 5

[tex]Pr(5)\text{ =}\frac{1}{6}[/tex]

Step 4

Find the probability of getting a 6

[tex]Pr(6)=\frac{1}{6}[/tex]

Step 4

Find the probability of getting a 1,5 or 6

[tex]Pr(1,5\text{ or 6)=Pr}(1)+Pr(5)+Pr(6)_{}[/tex][tex]\begin{gathered} Pr(1,5\text{ or 6) = }\frac{1}{6}+\frac{1}{6}+\frac{1}{6} \\ Pr(1,5\text{ or 6) = }\frac{1}{2} \end{gathered}[/tex]

Hence, the probability of getting a 1, 5 or 6 when you roll a standard six-sided die = 1/2