Respuesta :

hello

to solve this question, we simply need to apply the formula of area of a segment

the formula is given as

[tex]A_{\text{segment}}=\frac{1}{2}\times(\theta-\sin \theta)\times r^2[/tex]

let's write out the variables given in the question

[tex]\begin{gathered} \theta=60^0 \\ r=5\operatorname{cm} \end{gathered}[/tex]

we can now input those values into the equation

[tex]\begin{gathered} A_{\text{segment}}=\frac{1}{2}\times(\theta-\sin \theta)\times r^2 \\ A_{\text{segment}}=\frac{1}{2}\times(60-\sin 60)\times5^2 \\ A_{\text{segment}}=\frac{1}{2}\times(60-0.8660)\times25 \\ A_{\text{segment}}=\frac{1}{2}\times1478.35 \\ A_{\text{segement}}=739.175\operatorname{cm}^2 \end{gathered}[/tex]

to get the value of the area of the shaded region,

[tex]\text{area of shaded region=area of circle - area of segment}[/tex]

let's calculate the area of the circle

[tex]undefined[/tex]