Respuesta :

[tex]f(x)=\frac{x^2-4^{}}{2x^2}[/tex]

to solve this problem, we can follow some steps

step 1

replace f(x) with y

[tex]\begin{gathered} f(x)=\frac{x^2-4}{2x^2} \\ y=\frac{x^2-4}{2x^2} \end{gathered}[/tex]

step 2

replace every x with a y and every y with an x

[tex]\begin{gathered} x=\frac{y^2-4}{2y^2} \\ \end{gathered}[/tex]

step 3

solve for y

[tex]\begin{gathered} x=\frac{y^2-4}{2y^2} \\ \text{cross multiply both sides} \\ 2y^2\times x=y^2-4^{} \\ 2y^2x=y^2-4 \\ \text{collect like terms} \\ 2y^2x-y^2=-4 \\ \text{factorize y}^2 \\ y^2(2x-1)=-4 \\ \text{divide both sides by 2x - 1} \\ \frac{y^2(2x-1)}{(2x-1)}=-\frac{4}{(2x-1)} \\ y^2=-\frac{4}{2x-1} \\ \text{take the square root of both sides} \\ y=-\sqrt[]{\frac{4}{2x-1}} \end{gathered}[/tex]

therefore the inverse of f(x) is

[tex]f^{-1}(x)=-\sqrt[]{\frac{4}{2x-1}}[/tex]