Solution.
Initial population = 205
After 1 year, population = 205 - 7 = 198
After 2 years , population = 198 - 7 = 191
After 3 years , population = 191 - 7 = 184
We can generate a table of value for the changes
[tex]\begin{gathered} Slope\text{ of the line, m = }\frac{198-205}{1-0} \\ m=-\frac{7}{1} \\ m=-7 \end{gathered}[/tex]One point on the line = (0, 205)
[tex]\begin{gathered} The\text{ equation of the linear model can be gotten using the formula} \\ y-y_1=m(x-x_1) \\ y-205=-7(x-0) \\ y-205=-7x \\ y=-7x+205 \\ Replacing\text{ y with P and x with t} \\ The\text{ linear model is P = -7t + 205} \end{gathered}[/tex]The t-intercept signifies the time when the population of the tiger will be zero. That is the time when there will be no more tigers in the park