What is the half-life of the goo in minutes? Find a formula for G(t), the amount of goo remaining at time t. How many grams of goo will remain after 68 minutes?

What is the halflife of the goo in minutes Find a formula for Gt the amount of goo remaining at time t How many grams of goo will remain after 68 minutes class=

Respuesta :

To solve this question on the half-life, we will use this expression:

[tex]\begin{gathered} G(t)=G_oe^{-kt} \\ \text{where G(t) is the remaining sample at time t.} \\ G_{o\text{ }}\text{ is the original sample} \\ K\text{ is a constant} \\ t\text{ is time} \end{gathered}[/tex]

To proceed in solving, we will need to find the value of constant k

[tex]\begin{gathered} G(t)=G_oe^{-kt} \\ G(t)=17.25 \\ G_o=276 \\ t=255 \\ \text{Now substitute the parameters above into the formula:} \\ 17.25=276e^{-k(255)} \\ \frac{17.25}{276}=e^{-k(255)} \end{gathered}[/tex][tex]\begin{gathered} 0.0625=e^{-k255} \\ \ln 0.0625=-255k \\ \frac{\ln 0.0625}{-255}=k \\ 0.0109=k \end{gathered}[/tex]

Now to get the half-life in minutes will be to get the time taken for the sample to go from 276g to 138g.

[tex]\begin{gathered} G(t)=G_oe^{-kt} \\ G(t)=138g \\ 138=276e^{-0.0109t} \\ \frac{138}{276}=e^{-0.0109t} \\ 0.5=e^{-0.0109t} \\ \ln 0.5=-0.0109t \\ \frac{\ln 0.5}{-0.0109}=t \\ 63.591\text{minutes = t} \end{gathered}[/tex]

The half-life is 63.59 minutes.

The formula for G(t) at time t is:

[tex]G(t)=276e^{-0.0109t}[/tex]

The amount of goo that will remain after 68 minutes is calculated using the formula above:

[tex]\begin{gathered} G(t)=276e^{-0.0109t} \\ t=68\text{ minutes} \\ G(t)=276e^{-0.0109(68)} \\ G(t)=276e^{-0.7412} \\ G(t)=131.5255\text{ grams} \\ G(t)\text{ = 131.53 grams (to 2 d.p)} \end{gathered}[/tex]

The amount of goo remaining after 68 minutes is 131.53 grams.