11. Determine if the following sequence is arithmetic or geometric. Then, find the 12th term. 2, 6, 18, 54, ... a. arithmetic: 35 b. arithmetic: 354,294 c. geometric: 35 d. geometric: 354,294

Respuesta :

We have the sequence: 2, 6, 18, 54...

If the sequence is arithmetic, there must be a common difference between the terms that remains constant.

This is not the case for this sequence.

We can try by seeing if there is a common factor k such that:

[tex]a_n=k\cdot a_{n-1}[/tex]

We can do it by:

[tex]\frac{a_2}{a_1}=\frac{6}{2}=3[/tex][tex]\frac{a_3}{a_2}=\frac{18}{6}=3[/tex][tex]\frac{a_4}{a_3}=\frac{54}{18}=3[/tex]

There, we have a geometric sequence, with factor k=3:

[tex]a_n=3\cdot a_{n-1}[/tex]

We can relate it to the first term as:

[tex]\begin{gathered} a_2=3\cdot a_1 \\ a_3=3\cdot a_2=3\cdot3\cdot a_1=3^2\cdot a_1 \\ a_4=3\cdot a_3=3\cdot3^2\cdot a_1=3^3\cdot a_1 \\ a_n=3^{n-1}\cdot a_1=3^{n-1}_{}\cdot2 \end{gathered}[/tex]

For n=12, we have:

[tex]a_{12}=3^{12-1}\cdot2=3^{11}\cdot2=177,147\cdot2=354,294[/tex]

The value of a12 is 354,294.

The answer is d) Geometric, 354,294.