Respuesta :

Given the system of inequalities:

2x + 3y < -6

-2x + 3y < 6

Let's solve the system by graphing.

To graph, rewrite the inequalities in slope-intercept form:

y = mx + b

Inequality 1:'

Subtract 2x from both sides:

2x - 2x + 3y < -2x - 6

3y < -2x - 6

Divide all terms by 3:

[tex]\begin{gathered} \frac{3y}{3}<-\frac{2x}{3}-\frac{6}{3} \\ \\ y<-\frac{2}{3}x-2 \end{gathered}[/tex]

Inequality 2:

Add 2x to both sides:

-2x + 2x + 3y < 2x + 6

3y < 2x + 6

Divde all terms by 3:

[tex]\begin{gathered} \frac{3y}{3}<\frac{2x}{3}+\frac{6}{2} \\ \\ y<\frac{2}{3}x+2 \end{gathered}[/tex]

Now, let's plot 3 points from each inequlality and connect using a straight edge.

Inequality 1:

When x = -3

Substitute -3 for x and solve for y:

[tex]\begin{gathered} y<-\frac{2}{3}(-3)-2 \\ \\ y<2-2 \\ \\ y<0 \end{gathered}[/tex]

When x = 0:

[tex]\begin{gathered} y<-\frac{2}{3}(0)-2 \\ \\ y<-2 \end{gathered}[/tex]

When x = 3:

[tex]\begin{gathered} y<-\frac{2}{3}(3)-2 \\ \\ y<-2-2 \\ \\ y<-4 \end{gathered}[/tex]

From inequality 1, we have the points:

(x, y) ==> (-3, 0), (0, -2), (3, -4)

For inequlity 2:

When x = -3:

[tex]\begin{gathered} y<\frac{2}{3}(-3)+2 \\ \\ y<-2+2 \\ \\ y<0 \end{gathered}[/tex]

When x = 0:

[tex]undefined[/tex]