Answer
28.58 grams
Explanation
Given:
Molar mass of the gas, M = 85.74 g/mol
Volume, V = 1,681 mL = 1.681 L
Temperature, T = 58.6 °C = (58.6 + 273.15 K) = 331.75 K
Pressure, P = 5.4 atm
What to find:
The mass of the gas in grams present.
Step-by-step solution:
The mass in grams of the gas present can be calculated using the ideal gas equation:
[tex]\begin{gathered} PV=nRT \\ \\ n=moles=\frac{Mass}{Molar\text{ }mass} \\ \\ \Rightarrow PV=\frac{Mass}{Molar\text{ }mass}RT \end{gathered}[/tex]Putting the values of the given parameters and R = 0.0821 atm•L/mol•K into the formula:
[tex]\begin{gathered} 5.4atm\times1.681L=\frac{Mass}{85.74g\text{/}mol}\times0.0821atm•L/mol•K\times331.75K \\ \\ 9.0774atm•L=Mass(0.317665908atm•L/g) \\ \\ Divide\text{ }both\text{ }sides\text{ }by\text{ }0.317665908atm•L/g \\ \\ \frac{9.0774atm•L}{0.317665908atm•L/g}=\frac{Mass(0.317665908atm•L)}{0.317665908atm•L\text{/}g} \\ \\ \Rightarrow Mass=28.58\text{ }grams \end{gathered}[/tex]The mass of the gas in grams present = 28.58 grams.