Respuesta :

Given the data:

36, 14, 18, 18, 34

Let's find the standard deviation of the sample distances.

To find the standard deviation, apply the formula:

[tex]S=\sum_{i\mathop{=}1}^n\sqrt{\frac{(x_i-x_{avg})^2}{n-1}}[/tex]

Where:

n = 5

Let's first find the average/,mean:

[tex]\begin{gathered} avg=\frac{36+14+18+18+34}{5} \\ \\ avg=\frac{120}{5} \\ \\ avg=24 \end{gathered}[/tex]

The mean of the sample is 24.

Now, to find the standard deviation, we have:

[tex]\begin{gathered} S=\sqrt{\frac{(36-24)^2+(14-24)^2+(18-24)^2+(18-24)^2+(34-24)^2}{5-1}} \\ \\ S=\sqrt{\frac{(12)^2+(-10)^2+(-6)^2+(-6)^2+(10)^2}{4}} \\ \\ S=\sqrt{\frac{144+100+36+36+100}{4}} \\ \\ S=\sqrt{\frac{416}{4}} \\ \\ S=\sqrt{104} \\ \\ S=10.20 \end{gathered}[/tex]

Therefore, the standard deviation of the given sample distances is 10.20

ANSWER:

10.20