I'm using goformative to do my work, I have number 13 answer right but the rest show my answers incorrect, I will appreciate if you can help me with my question I will paste the image of the question I have.

Respuesta :

[tex]\begin{gathered} \sin \text{ }\theta\text{ = }\frac{2\sqrt[]{5}}{5} \\ \\ \cos \text{ }\theta\text{ = -}\frac{\sqrt[]{5}}{5} \\ \\ \text{Tan }\theta\text{ = -2} \\ \\ co\sec \text{ }\theta\text{ = }\frac{\sqrt[]{5}}{2} \\ \\ \sec \text{ }\theta\text{ = -}\sqrt[]{5} \\ \\ \cot \text{ }\theta\text{ = -}\frac{1}{2} \end{gathered}[/tex]

Firstly, we will have to make a representation of the angle

We have this as follows;

As we can see, alpha added to theta is 180 degrees

Firstly, by the use of Pythagoras' theorem, we can get the value of r

r faces the right angle, and that makes it the hypotenuse

According to the theorem, the square of r, the hypotenuse equals the sum of the squares of the two other sides

Thus, we have it that;

[tex]\begin{gathered} r^2=(-2)^2+4^2 \\ r^2\text{ = 4 + 16} \\ r^2\text{ = 20} \\ r\text{ = }\sqrt[]{20} \\ r\text{ = 2}\sqrt[]{5} \end{gathered}[/tex]

From here, we can proceed to get the individual trigonometric ratios

a) Sine

This is the ratio of the opposite to the hypotenuse

On the second quadrant, the value of sine is positive

Thus, we have it that;

[tex]\begin{gathered} \sin \text{ }\alpha\text{ = }\frac{4}{2\sqrt[]{5}} \\ \alpha\text{ = }\sin ^{-1}(\frac{4}{2\sqrt[]{5}}) \\ \alpha\text{ = 63.43} \\ \theta\text{ = 180-63.43} \\ \theta\text{ = 116.57} \\ \sin \text{ 116.57 = }\frac{4}{2\sqrt[]{5}\text{ }}=\text{ }\frac{4\sqrt[]{5}}{10}\text{ = }\frac{2\sqrt[]{5}}{5} \\ \\ \sin \text{ }\theta\text{ = }\frac{2\sqrt[]{5}}{5} \end{gathered}[/tex]

b) cosine

The cosine of an angle is the ratio of the adjacent to the hypotenuse

Mathematically, we know that;

[tex]\begin{gathered} \cos ^2\theta+sin^2\theta\text{ = 1} \\ \cos ^2\theta=1-sin^2\theta \\ \cos ^2\theta\text{ = 1 - (}\frac{2\sqrt[]{5}}{5})^2 \\ \\ \cos ^2\theta\text{ = 1- }\frac{20}{25} \\ \\ \cos ^2\theta\text{ = }\frac{5}{25} \\ \cos ^2\theta\text{ = }\frac{1}{5} \\ \\ \cos \text{ }\theta\text{ = }\sqrt[]{\frac{1}{5}} \\ \\ \cos \text{ }\theta\text{ = -}\frac{\sqrt[]{5}}{5} \end{gathered}[/tex]

We choose the negative value for the cosine since cosine is negative on the second quadrant

c) Tan

The tan of an angle is the ratio of the opposite to the adjacent

Also, by dividing the sine of an angle by the cosine of the same angle, we can get the tan of the angle

Thus, we have it that;

[tex]\begin{gathered} \text{Tan }\theta\text{ = }\frac{\sin \text{ }\theta}{\cos \text{ }\theta} \\ \\ \text{Tan }\theta\text{ = }\frac{\frac{2\sqrt[]{5}}{5}}{\frac{-\sqrt[]{5}}{5}}\text{ = }\frac{2\sqrt[]{5}}{5}\times\frac{5}{-\sqrt[]{5}}\text{ = -2} \end{gathered}[/tex]

d) cosec theta

The cosec of an angle is the multiplicative inverse of the sine

Mathematically;

[tex]\begin{gathered} co\sec \theta\text{ = }\frac{1}{\sin \text{ }\theta} \\ \\ co\sec \text{ }\theta\text{ = }\frac{1}{\frac{2\sqrt[]{5}}{5}}\text{ = }\frac{5}{2\sqrt[]{5}}\text{ = }\frac{5\sqrt[]{5}}{10}\text{ = }\frac{\sqrt[]{5}}{2} \end{gathered}[/tex]

e) sec theta

The sec of an angle is the multiplicative inverse of the cosine of the angle

Thus, we have it that;

[tex]\text{sec }\theta\text{ = }\frac{1}{\cos \text{ }\theta}\text{ = }\frac{1}{-\frac{\sqrt[]{5}}{5}}\text{ = -}\frac{5}{\sqrt[]{5}}\text{ = -}\frac{5\sqrt[]{5}}{5}\text{ = -}\sqrt[]{5}[/tex]

f) cot theta

The cot of an angle is the multiplicative angle of the tan

Thus, we have it that;

[tex]\begin{gathered} \cot \text{ }\theta\text{ = }\frac{1}{\tan \text{ }\theta} \\ \\ \cot \text{ }\theta\text{ = }\frac{1}{-2}\text{ = -}\frac{1}{2} \end{gathered}[/tex]

Ver imagen MadalynP14730