Solution:
Given:
Two cylinders on each other;
[tex]\begin{gathered} \text{For the cylinder at the top, the following were given;} \\ d=6in \\ \text{radius is half of a diameter,} \\ \text{Hence,} \\ r=\frac{d}{2}=\frac{6}{2} \\ r=3in \\ h=8in \\ \pi=3 \end{gathered}[/tex]Using the formula of the volume of a cylinder;
[tex]\begin{gathered} V=\pi r^2h \\ V=3\times3^2\times8 \\ V=216in^3 \end{gathered}[/tex]For the cylinder at the bottom, the following were given;
[tex]\begin{gathered} \\ d=10in \\ \text{radius is half of a diameter,} \\ \text{Hence,} \\ r=\frac{d}{2}=\frac{10}{2} \\ r=5in \\ h=2in \\ \pi=3 \end{gathered}[/tex]Using the formula of the volume of a cylinder;
[tex]\begin{gathered} V=\pi r^2h \\ V=3\times5^2\times2 \\ V=150in^3 \end{gathered}[/tex]Hence, the volume of the object is the total volume of both cylinders.
[tex]undefined[/tex]
Therefore, the volume of the object is 366 cubic inches.