Respuesta :

Given:

Amplitude of cosine function, A=3.

Period, T=7π/4.

Midline, D=2.

The time period can be expressed as:

[tex]T=\frac{2\pi}{B}[/tex]

Put T=7π/4 to find the value of B.

[tex]\begin{gathered} \frac{7\pi}{4}=\frac{2\pi}{B} \\ B=\frac{4\times2}{7} \\ =\frac{8}{7} \end{gathered}[/tex]

The general cosine function can be expressed as,

[tex]f(x)=A\cos (Bx)+D[/tex]

Substitute B=8/7, A=3 and D=2 in above equation.

[tex]f(x)=3\cos (\frac{8}{7}x)+2[/tex]

Therefore, the cosine function is,

[tex]f(x)=3\cos (\frac{8}{7}x)+2[/tex]