Explanation
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints
it is given by
[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]then
Step 1
Let
[tex]\begin{gathered} P2=(4,3) \\ M=(4,7) \\ P1=unknown=(x_1,y_1) \end{gathered}[/tex]replace
[tex]\begin{gathered} (4,7)=(\frac{x_1+4}{2},\frac{y_1+3}{2}) \\ \text{hence} \\ 4=\frac{x_1+4}{2} \\ and \\ 7=\frac{y_1+3}{2} \end{gathered}[/tex]Step 2
now, we have to solve for x1 and y1
a)
[tex]\begin{gathered} 4=\frac{x_1+4}{2} \\ \text{Multiply both sides by 2} \\ 4\cdot2=\frac{x_1+4}{2}\cdot2 \\ 8=x_1+4 \\ \text{subtrac 4 in both sides} \\ 8-4=x_1+4-4 \\ 4=x_1 \end{gathered}[/tex]b)
[tex]\begin{gathered} 7=\frac{y_1+3}{2} \\ \text{Multiply both sides by 2} \\ 7\cdot2=\frac{y_1+3}{2}\cdot2 \\ 14=y_1+3 \\ \text{subtract 3 in both sides} \\ 14-3=y_1+3-3 \\ 11=y_1 \end{gathered}[/tex]therefore, the coordinates of the other end point is
[tex](4,11)[/tex]I hope this helps you