Respuesta :

Equation of a line in slope intercept form:

[tex]y=mx+b[/tex]

m is the slope

b is the y-intercept

To find the slope use the two given points in the next formula:

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ \\ \text{points: }(-4,-2)(3,7) \\ \\ m=\frac{7-(-2)}{3-(-4)} \\ \\ m=\frac{7+2}{3+4}=\frac{9}{7} \end{gathered}[/tex]

Use the slope and one of the points to find the y-intercept:

[tex]\begin{gathered} y=mx+b \\ (3,7) \\ \\ 7=\frac{9}{7}(3)+b \\ \\ 7=\frac{27}{7}+b \\ \\ 7-\frac{27}{7}=b \\ \\ b=\frac{49-27}{7} \\ \\ b=\frac{22}{7} \end{gathered}[/tex]

Then, the equation of the line passing through the given pair of points is:

[tex]y=\frac{9}{7}x+\frac{22}{7}[/tex]