Respuesta :

The given function is

[tex]f(x)=-10x^2-120x-5[/tex]

First, find the first derivative of the function f(x). Use the power rule.

[tex]\begin{gathered} f^{\prime}(x)=-10\cdot2x^{2-1}-120x^{1-1}+0 \\ f^{\prime}(x)=-20x-120 \end{gathered}[/tex]

Then, make it equal to zero.

[tex]-20x-120=0[/tex]

Solve for x.

[tex]\begin{gathered} -20x=120 \\ x=\frac{120}{-20} \\ x=-6 \end{gathered}[/tex]

This means the function has one critical value that creates two intervals.

We have to evaluate the function using two values for each interval.

Let's evaluate first for x = -7, which is inside the first interval.

[tex]f^{\prime}(-7)=-20(-7)-120=140-120=20\to+[/tex]

Now evaluate for x = -5, which is inside the second interval.

[tex]f^{\prime}(7)=-20(-5)-120=100-120=-20\to-[/tex]

As you can observe, the function is increasing in the first interval but decreases in the second interval. This means when x = -6, there's a maximum point.

At last, evaluate the function when x = -6 to find the y-coordinate and form the point.

[tex]\begin{gathered} f(-6)=-10(-6)^2-120(-6)-5=-10(36)+720-6 \\ f(-6)=-360+720-5=355 \end{gathered}[/tex]

Therefore, we have a relative maximum point at (-6, 355).

Ver imagen LornaO328402