Given
The normal equations of an exponential curve.
Solution
[tex]The\text{ exponential equation is y=ax}^b[/tex]taking logarithm on both sides, we get
[tex]\begin{gathered} log10y=log10a+blog10x \\ \\ Y=A+bXwhereY=log10y,A=log10a,X=log10x \end{gathered}[/tex]which linear in Y,X
So the corresponding normal equations are
[tex]\begin{gathered} ∑Y=nA+b∑X \\ \\ ∑XY=A∑X+b∑X2 \end{gathered}[/tex]The final answer
Option A