Since we are talking about a group of people the order is not going to matter when we select the different people, then, start to make the combination for the group of women and the group of men separately.
[tex]\begin{gathered} women=15C8 \\ women=\frac{15!}{(15-8)!8!} \\ women=\frac{15\cdot14\cdot13\cdot12\cdot11\cdot10\cdot9}{7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1} \\ women=6435 \end{gathered}[/tex][tex]\begin{gathered} men=16C8 \\ men=\frac{16!}{(16-8)!8!} \\ men=\frac{16\cdot15\cdot14\cdot13\cdot12\cdot11\cdot10\cdot9}{8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1} \\ men=12870 \end{gathered}[/tex]then, multiply the results
[tex]\begin{gathered} 16C8\cdot15C8 \\ 12870\cdot6435 \\ 82,818,450 \end{gathered}[/tex]