Answer:
14.2 m/s
Explanation:
When the source and receiver are getting closer, we can use the following equation:
[tex]f_o=(\frac{v+v_o}{v-v_s})f_s[/tex]Where fo is the observed frequency, fs is the emitted frequency, vo is the speed of the observed, vs is the speed of the source, and v is the speed of the sound. Solving for vo, we get:
[tex]\begin{gathered} \frac{f_o}{f_s}=\frac{v+v_o}{v-v_s} \\ \\ \frac{f_o}{f_s}(v-v_s)=v+v_o \\ \\ \frac{f_o}{f_s}(v-v_s)-v=v_o \\ \\ v_o=\frac{f_o}{f_s}(v-v_s)-v \end{gathered}[/tex]Then, replacing v = 340 m/s, vs = 0 m/s, fs = 960 Hz, and fo = 1000 Hz, we get:
[tex]\begin{gathered} v_r=\frac{1000}{960}(340-0)-340 \\ \\ v_r=14.2\text{ m/s} \end{gathered}[/tex]Therefore, the speed of the patrol car is 14.2 m/s