Respuesta :

Given:

[tex]\frac{(x-2)^2}{36}+\frac{(y+3)^2}{24}=1[/tex]

Required:

Find the endpoints of the major axis and minor axis of the ellipse.

Explanation:

The standard equation of the ellipse is:

[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex]

Where h and k are the centers of the ellipse and a and b are the length of the axis.

Rewrite the given equation as:

[tex]\frac{(x-2)^2}{(6)^2}+\frac{(y+3)^2}{(2\sqrt{6})^2}=1[/tex]

Compare the given equation with the standard equation we get

[tex]\begin{gathered} h=2,\text{ k=-3} \\ a=6,\text{ b=2}\sqrt{6} \end{gathered}[/tex]

Since a>b so the coordinate x-axis will be a major axis and the y-axis will be a minor axis.

The coordinate of the major axis are:

[tex](h\pm a,k)=(2\pm6,-3)[/tex]

Take + sign

[tex](2+6,-3)=(8,-3)[/tex]

Take - sign

[tex](2-6,-3)=(-4,-3_)[/tex]

The coordinates of the minor axis are:

[tex](h,k\pm b)=(2,-3\pm2\sqrt{6})[/tex]

Take the + sign

[tex](2,-3+2\sqrt{6})[/tex]

Take the - sign

[tex](2,-3-2\sqrt{6})[/tex]

Final Answer:

The coordinates of the major axis are: (8,-3) and (-4,-3)

The coordinates of the minor axis are:

[tex](2,-3\pm2\sqrt{6})[/tex]