Respuesta :

First, I will re-sketch the image

First, we need to find x

Using the trig. ratio

[tex]\tan \theta=\frac{opposite}{adjacent}[/tex][tex]\tan 45=\frac{6}{x}[/tex]

cross-multiply

[tex]x\tan 45=6[/tex][tex]x\times1=6[/tex][tex]x=6[/tex]

Next, we need to find y

Using the trig. ratio

[tex]\sin \theta=\frac{opposite}{hypotenuse}[/tex][tex]\sin 45=\frac{6}{y}[/tex]

cross-multiply

[tex]y\sin 45=6[/tex]

Divide both-side of the equation by sin45

[tex]y=\frac{6}{\sin 45}[/tex][tex]y=8.485[/tex]

Area of a trapezoid is given by the formula;

[tex]A=\frac{1}{2}(a+b)h[/tex]

From the sketch above,

a=12

b=24

h=6

substitute the value and then evaluate

[tex]A=\frac{1}{2}(12+24)6[/tex][tex]=108\text{ square unit}[/tex]

Perimeter is the distance around the shape

[tex]\text{Perimeter}=8.485+12+8.485+24[/tex][tex]\text{perimeter }\approx\text{ 53}[/tex]

Ver imagen NayirahB703019