Respuesta :

Given:

One coin is tossed 3 times.

Required:

We need to find the probability of

a) 3 heads,

b) 3 tails and

c) tails then heads, then tails

Explanation:

The sample space for tossing a coin 3 times

[tex]S=\lbrace HHH,HTT.HTH.HHT.HTT,THH,TTT.TTH.HHT.TTT\rbrace[/tex][tex]n(S)=8[/tex]

a)

Let A be the event of getting 3 heads.

[tex]A=\lbrace HHH\rbrace[/tex][tex]n(A)=1[/tex]

The probability of getting three heads is

[tex]P(3\text{ heads\rparen=}\frac{n(A)}{n(S)}=\frac{1}{8}[/tex]

b)

Let B be the event of getting 3 tails.

[tex]B=\lbrace TTT\rbrace[/tex][tex]n(B)=1[/tex]

The probability of getting three tails is

[tex]P(3\text{ tails\rparen=}\frac{n(B)}{n(S)}=\frac{1}{8}[/tex]

c)

Let C be the event of getting tails then heads, then tails

[tex]C=\lbrace THT\rbrace[/tex][tex]n(C)=1[/tex]

The probability of getting tails then heads, then tails is

[tex]P(\text{ tails then heads, then tails\rparen=}\frac{n(C)}{n(S)}=\frac{1}{8}[/tex]

Final answer:

[tex]P(3\text{ heads\rparen}=\frac{1}{8}[/tex][tex]P(3\text{ tails\rparen}=\frac{1}{8}[/tex][tex]P(\text{ tails then heads, then tails\rparen}=\frac{1}{8}[/tex]