Answer:
3.32 units
Explanation:
From the given figure, applying ratios of similar triangles:
[tex]\begin{gathered} \frac{QT}{RT}=\frac{RT}{TS} \\ \implies RT^2=QT\times TS \end{gathered}[/tex]Substitute the given values:
[tex]\begin{gathered} RT^2=5\times2.2 \\ RT^2=11 \\ \sqrt{RT^2}=\sqrt{11} \\ RT=3.32\text{ units} \end{gathered}[/tex]The length of RT is 3.32 units (to the nearest hundredth).