Answer:
[tex]x^2+y^2=2[/tex]Explanation:
In a unit circle:
• The centre, (h,k)= (0,0)
,• The points(x,y)=(1,1) on the circle.
First, determine the radius using the Pythagorean Theorem:
[tex]\begin{gathered} r^2=x^2+y^2 \\ r^2=1^2+1^2 \\ r^2=1+1 \\ r^2=2 \\ r=\sqrt[]{2}\text{ units} \end{gathered}[/tex]Substituting the coordinates of the centre and radius into the general equation of the circle below:
[tex](x-h)^2+(y-k)^2=r^2[/tex]We obtain:
[tex]\begin{gathered} (x-0)^2+(y-0)^2=\sqrt[]{2}^2 \\ x^2+y^2=2 \end{gathered}[/tex]