Respuesta :

ANSWERS

• m∠B = 59°

,

• m∠C = 81°

,

• c = 230.5 cm

EXPLANATION

Let's draw a diagram of this triangle first,

Given:

• a = 150 cm

,

• b = 200 cm

,

• m∠A = 40°

Find c, C and B.

First, with the given information, we can apply the law of sines to find B,

[tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

For this problem, we have to use the first two fractions,

[tex]\frac{a}{\sin A}=\frac{b}{\sin B}[/tex]

Replace with the known values,

[tex]\frac{150\operatorname{cm}}{\sin40}=\frac{200\operatorname{cm}}{\sin B}[/tex]

To solve for B, first raise both sides of the equation to -1 - in other words, flip the fractions,

[tex]\frac{\sin40}{150\operatorname{cm}}=\frac{\sin B}{200\operatorname{cm}}[/tex]

Multiply both sides by 200cm,

[tex]\begin{gathered} \frac{\sin40}{150\operatorname{cm}}\cdot200cm=\frac{\sin B}{200\operatorname{cm}}\cdot200\operatorname{cm} \\ \frac{200\operatorname{cm}}{150\operatorname{cm}}\sin 40=\sin B \end{gathered}[/tex]

And use the inverse of the sine to find B,

[tex]B=\sin ^{-1}(\frac{200\operatorname{cm}}{150\operatorname{cm}}\sin 40)[/tex]

The three equations you can't see above are in the following picture,

Solve with a calculator: B = 59°

To find the third angle C, we know that the interior angles of any triangle add up to 180°. Thus, for this triangle,

• A + B + C = 180°

Solve for C,

• C = 180° - A - B

Replace with the values

• C = 180° - 40° - 59°

• C = 81 °

Then, using the law of sines again, we can find the length of side c.

[tex]\frac{a}{\sin A}=\frac{c}{\sin C}[/tex]

Solve for c and replace with the values,

[tex]c=a\cdot\frac{\sin C}{\sin A}=150\operatorname{cm}\cdot\frac{\sin81}{\sin40}=230.5\operatorname{cm}[/tex]

The two equations you can't see above are in the following picture,

The length of side c is 230.5 cm

Ver imagen AddilynnI580439
Ver imagen AddilynnI580439
Ver imagen AddilynnI580439