Given:
length on scale drawing = 2.5 in or 5/2 in
width on scale drawing = 1.5 in or 3/2 in
The relationship between the actual measurement (in ft) and the scale measurement is given to be:
[tex]\frac{1}{4}\text{ in repr}esents\text{ 4ft}[/tex]Hence, the actual length would be:
[tex]\begin{gathered} =\text{ }\frac{5}{2}\text{ in }\times\frac{4ft}{\frac{1}{4}\text{ in}} \\ =\text{ }\frac{5}{2}\text{ }\times16\text{ ft} \\ =\text{ 40 ft} \end{gathered}[/tex]The actual width would be:
[tex]\begin{gathered} =\text{ }\frac{3}{2}\text{ in }\times\text{ }\frac{4ft}{\frac{1}{4}\text{ in}} \\ =\text{ }\frac{3}{2}\text{ }\times\text{ 16 ft} \\ =\text{ 24 ft} \end{gathered}[/tex]Hence, the actual length and width of the bedroom are 40 ft and 24 ft respectively
Answer:
length = 40 ft
width = 24 ft