The probability of selecting face card (jack,queen or king) is
[tex]\begin{gathered} P(\text{jack,queen or king)=}\frac{4+4+4}{52}=\frac{12}{52}=\: 0.23076 \\ \therefore P(\text{jack,queen or king)}=0.23076 \end{gathered}[/tex]The probability of not selecting a face card (jack,queen or king):
[tex]\begin{gathered} 1-0.23076=0.76924 \\ \therefore P(\text{not selecting face card)=}0.76924 \end{gathered}[/tex]Therefore,
a) Kyd's Expected value is
[tex]\begin{gathered} 0.23076\times6-0.76924\times2=1.38456-1.53848=-0.15392\approx-0.15(nearest\text{ cent)} \\ \end{gathered}[/tex]
Hence, Kyd's Expected value is
[tex]\text{ -\$0.15}[/tex]b) North's expected value is
[tex]\begin{gathered} 0.76924\times2-0.23076\times6=0.15392\approx0.15(nearest\text{ cent)} \\ \end{gathered}[/tex]Hence, North's Expected value is
[tex]\text{ \$0.15}[/tex]