then k-4=2 or k-4=-2
and we have that k=6 and k=2, are the two answers for the equation.
if we replace k=2 in the first equation
[tex](2)^2-8(2)+20=4-16+20=-12+20=8[/tex]which makes the equation true for k=2, then is we replace k=6 in the first equation:
[tex](6)^2-8(6)+20=36-48+20=-12+20=8[/tex]then the equation holds for k=6 too.
the second equation is:
[tex]2=\sqrt[]{-4-x}[/tex]then
[tex]4=-4-x[/tex][tex]x=-4-4[/tex]finally
[tex]x=-8[/tex]if we replace x=-8 in the second equation
[tex]\sqrt[]{-4-(-8)}=\sqrt[]{-4+8}=\sqrt[]{4}=2[/tex]then the equation holds for x=-8.