Solution:
Given the sequence:
[tex]25,\text{ 31, 37, 43, . . .}[/tex]Provided that the sequence is arithmetic, to evaluate the common difference, we subtract a preceding term from its succeeding term.
This implies that
[tex]\begin{gathered} d=a_2-a_1\text{ or a}_3-a_2 \\ where \\ d\Rightarrow common\text{ difference} \\ a_2\Rightarrow second\text{ term} \\ a_1\Rightarrow first\text{ term} \end{gathered}[/tex]In this case,
[tex]\begin{gathered} a_1=25 \\ a_2=31 \\ \end{gathered}[/tex]Thus, we have
[tex]\begin{gathered} d=a_2-a_1 \\ =31-26 \\ \Rightarrow d=6 \end{gathered}[/tex]The common difference is thus 6
The correct option is