Respuesta :

The Solution:

Given the ends of a diameter:

[tex](17,12)\text{ and }(13,16)[/tex]

Required:

To write the equation of the circle.

Step 1:

Find the center of the circle by using the midpoint formula.

[tex]Midpoint=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

In this case,

[tex]\begin{gathered} x_1=17 \\ y_1=12 \\ x_2=13 \\ y_2=16 \end{gathered}[/tex]

Substituting, we get

[tex]\begin{gathered} \text{ Midpoint}=(\frac{17+13}{2},\frac{12+16}{2})=(\frac{30}{2},\frac{28}{2})=(15,14) \\ So, \\ The\text{ center}=(15,14) \end{gathered}[/tex]

Step 2:

Find the radius of the circle.

Using the distance between two points formula:

[tex]r^2=(x_2-x_1)^2+(y_2-y_1)^2[/tex][tex]\begin{gathered} r^2=(13-17)^2+(16-12)^2 \\ \\ r^2=(-4)^2+(4)^2 \\ \\ r^2=16+16 \\ \\ r^2=32 \end{gathered}[/tex]

Step 3:

Write the equation of the circle.

[tex]\begin{gathered} (x-h)^2+(y-k)^2=r^2 \\ \text{ Where} \\ h=15 \\ k=14 \\ r=32 \end{gathered}[/tex][tex]\begin{gathered} (x-15)^2+(y-14)^2=32^2 \\ \\ (x-15)^2+(y-14)^2-1024=0 \end{gathered}[/tex]

Therefore, the correct answers are:

[tex]\begin{gathered} center=(15,14) \\ \\ Equation:\text{ }(x-15)^2+(y-14)^2-1024=0 \end{gathered}[/tex]